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Abstract

Maintaining an accurate set of beliefs in a partially observable
scenario, particularly with respect to other agents operating in
the same space, is a vital aspect of multiagent planning. We
analyze how the beliefs of an agent can be updated for fast
adaptivity to changes in the behavior of an unknown team-
mate. The main contribution of this paper is the empirical
evaluation of an agent cooperating with a teammate whose
goals change periodically. We test our approach in a collabo-
rative multiagent domain where identification of goals is nec-
essary for successful completion. The belief revision tech-
nique we propose outperforms the traditional approach in a
majority of test cases. Additionally, our results suggest the
ability to approximate a higher level model by utilizing a be-
lief distribution over a set of lower level behaviors, particu-
larly when the belief update strategy identifies changes in the
behavior in a responsive manner.

Introduction
In this paper, we present a new approach, called Respon-
sive Action Planning with Intention Detection (RAPID), for
updating beliefs over agent goals with fast adaptation to
changes. It is often inaccurate to assume a teammate will
stick to a single goal throughout a game, especially when
state transitions provide incentive to switch, whether it be
an easier route to a goal or simply a more appealing one.
An ideal team agent should not only be able to assist its
teammate in achieving its goals, but also be flexible in its
planning capacity to account for such changes in teammate
behavior, much like a human team member would. In order
to achieve this capacity in collaborative agents, we extend
existing ideas of approaching the problem, namely by plan-
ning in a partially observable space with a set of beliefs.
However, we alter the belief update protocol such that po-
tential alternative goals are kept at relevant weights. This
approach contrasts with existing belief space planning ap-
proaches where each action toward a particular goal incurs a
multiplicative update in order to maximally separate the cur-
rent task’s belief weight from the remaining tasks’ weights.

As in previous work, RAPID models the planning
space as a partially observable Markov decision process
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(POMDP). POMDPs provide a decision theoretic basis for
evaluating policies within the constraints of a world de-
scribed by states through which actions can cause transitions
to new states. Partial observability occurs through the mask-
ing of states, leading to uncertainty in how planned actions
will effect to overall game state. In this paper, we restrict
the partial observability to the teammate’s model, such that
an agent must infer through observations the current goal.
Furthermore, unlike much of the existing work, we do not
assume a static hidden model. Instead, the teammate may
switch between many potential behaviors, and the task of the
agent is further complicated by identifying when these tran-
sitions occur. This relaxation provides a fairly intuitive rep-
resentation of how a human may adopt a new plan on the fly
according to his or her own preferences, with new goals rep-
resented by various noisy models by a collaborative agent.
When enough observed evidence favors switching to a new
goal, the agent can adapt quickly and plan accordingly.

Due to the complexity of planning in POMDPs, which
is PSPACE-complete for finding optimal solutions given
a finite horizon, we adopt an approximate approach using
Monte-Carlo tree search (MCTS). MCTS in an online tree
search algorithm that uses asymmetric tree growth to explore
promising action policies while minimizing time spent in ir-
relevant parts of the search space. As a scalable, anytime
algorithm, it has in recent years been popularly applied to
multiagent domains with large state spaces, of which one is
ad hoc collaboration.

Planning for collaborative action is challenging, partic-
ularly under the uncertainty of teammate models. Conver-
gence to the correct goal of a teammate is a vital as-
pect of multiagent planning. We propose a computationally
lightweight alteration to the traditional belief revision ap-
proach, which improves the adaptability of agents when co-
ordinating with teammates of non-static goals. This modi-
fication is not limited to sampling-based planners but can
be applied to existing approaches with similar belief repre-
sentations. We outline in detail both the problem space and
the mechanisms behind our approach, then evaluate using
a known example domain, Cops and Robbers. Finally, we
discuss extensions of this work as well as applications to
human-agent teams.



Related Work
Multiagent systems is a field comprised of a breadth of well-
studied topics. In this section, we draw on some of the exist-
ing work motivating the problem of coordinating in ad hoc
settings.

Uncertainty and Complexity in Multi-Agent
Planning
One of the foremost hurdles for multi-agent team decision
problems is computational complexity. MDP-based scenar-
ios with uncertainty on both agents’ sides with regard to
world state and observation history as well as fully recur-
sive modeling between agents fall under the category of de-
centralized partially-observable Markov decision problems
(DEC-POMDPs). Even with a finite horizon assumption for
planners, the complexity of finding an optimal joint policy
is NEXP-complete (Bernstein, Zilberstein, and Immerman
2000).

Nair et al. (2003) propose fixing teammate policies and
searching for locally optimal agent policies until an equilib-
rium is reached, resulting in a significant reduction in com-
putational time. In the vein of simplifying the problem di-
rectly, providing an agent with action and observation his-
tories, either via the game itself or free communication be-
tween agents, can allow for scenarios to be posed as single-
agent POMDPs (Pynadath and Tambe 2002), which have
PSPACE complexity. POMDPs have had considerably more
advances than their decentralized counterparts and are fre-
quently solved via dynamic programming (Barto 1998) or
sample-based techniques (Silver and Veness 2010).

Ad Hoc Teams in Pursuit Domains
In order to cope with this complexity problem, much of
the existing work in ad hoc multiagent teams has assumed
that unknown teammates are non-recursive, typically either
by being best-response agents (Stone, Kaminka, and Rosen-
schein 2010) or working under some designed static model
(Barrett, Stone, and Kraus 2011). Though some recent work
has begun to address recursive modeling in this area (Ag-
mon, Barrett, and Stone 2014), we will leverage the simpler
assumption of non-recursive teammates for this paper while
we explore adaptability through belief revision.

This paper has direct motivation from the Barrett et al.
(2011) work in discerning team models in the pursuit do-
main. The authors utilize a Bayesian update over known,
static models to identify likely models and plan accordingly.
More recently, it has been shown that ad hoc agents can
benefit from learning from experiences with initial teams,
then using that knowledge when collaborating with a new
team (Barrett et al. 2012). This is further enhanced by em-
ploying transfer learning to generalize that knowledge to a
small number of observations with a new team (Barrett et al.
2013).

The three previous papers were evaluated in the pursuit
domain, where a team of agents must coordinate to capture
a prey on a toroidal grid (Stone and Veloso 2000). As signifi-
cant work exists in this specific domain, we adapt a modified

version suited for experimentation in non-static teammate
models.

POMDPs
In the case where an agent’s potential goals are finite and
intentionally acted on in a sequential manner, the problem
of uncertainty in an agent’s current intent can be conceptu-
alized as a single-agent partially observable Markov deci-
sion process (POMDP) (Kaelbling, Littman, and Cassandra
1998). For convenience and consistency, we will adopt the
representation of a POMDP while discussing belief distri-
butions as applied to MCTS. Furthermore, in this paper, we
adopt a few assumptions regarding an unknown, observed
agent for clarity. First, the agent acts intentionally toward
one goal at a time. Secondly, the agent acts in a primarily de-
terministic, non-recursive manner, meaning it does not take
into account the possible actions of other agents in the sce-
nario.

A POMDP is a generalization of an Markov decision pro-
cess (MDP) where some aspect of the world state is not di-
rectly observable to an agent. The partial observability, in
this context, is constrained to the current goal the observed
agent is working toward. In this framework, a POMDP can
be represented as a tuple 〈S,A,Ω, B,R〉, where
• S is the set of world states, comprising of both the game

state and the current goal of the observed agent. Due to
the latter uncertainty, an agent cannot directly observe the
world state.

• A is the set of actions available to the agents.
• Ω defines a set of observations on actions occurring in the

game. In this case, we allow for all actions to be observ-
able at all times.

• B describes the set of belief states possible given an initial
state and a set of observed actions.

• R relates the common definition of a reward function in
MDPs, where R : S ×A→ R.
In order to plan successfully in an POMDP, agents

must utilize an observation history to update their beliefs
over time. As we define observations to be derived from
actions taken in the game, a history can be defined as
ht = 〈a1, a2, ...at〉. Beliefs are then described as a distri-
bution over possible states given those histories, or bt =
Pr(s|ht) ∀s ∈ S. The goal of planning in a POMDP
is to find a policy π maximizing the agent’s expected re-
ward, as given by Jπ(b0) =

∑∞
t=0E[R(st, at)|b0, π].

This can be done by searching through the belief
space to identify the optimal value function, V ∗(bt) =
maxa∈A

[
R(bt, a) +

∑
o∈O Ω(o|bt, a)V ∗(bt+1)

]
, where Ω

is a probability distribution over observations. Solving
POMDPs with a large number of states is intractable in many
settings; therefore, we use a sampling based method, Monte-
Carlo Tree Search, for an approximate solution. Our imple-
mentation is described in the next section.

Monte-Carlo Tree Search
Monte-Carlo Tree Search is a search algorithm based on
Monte-Carlo simulations within a sequential game. Through



Figure 1: Outline of Monte-Carlo Tree Search

evaluating potential states by averaging simulation out-
comes, MCTS holds several advantages over other search
methods. By sampling, it bypasses the curse of dimension-
ality of large numbers of state transitions. Black box sim-
ulations can be used for problems too complex to repre-
sent fully, and it can be used effectively without prior do-
main knowledge (Kocsis and Szepesvári 2006). In addition,
it converges to an optimal policy in fully observable and par-
tially observable problems given an appropriate exploration
function (Silver and Veness 2010) while also being an any-
time approach.

MCTS performs a large number of simulations of a game,
from the current state to the end of the game. As a new
simulation begins searching through the game tree, MCTS
considers information gathered from previous playthroughs.
Specifically each step of the game, MCTS selects the next
action with a bias toward those with a higher success rate
for the agent. When an action is taken for the first time, the
rest of the game is played out randomly. The result is then
back-propagated through the deliberately explored nodes, in
this case, just the root. Over many simulations, the program
focuses on better moves, leading to farther look-ahead with-
out giving as much consideration to inferior moves.

Potential actions at each node are selected in a fashion that
balances exploration and exploitation. The idea behind such
a heuristic is to progress deeper into the game tree through
actions with higher expected value (exploitation) while pe-
riodically trying less favorable moves that may have unseen
value (exploration). We use Upper Confidence Bounds ap-
plied to Trees (UCT), a popular, efficient algorithm for guid-
ing MCTS (Kocsis and Szepesvári 2006).

For this paper, we employ a modified version of UCT for
planning in POMDPs, similar to (Silver and Veness 2010).
Our implementation differs in that instead of utilizing a par-
ticle filter for updating the agent’s beliefs, we use a novel ad-
justment to traditional Bayesian-style update to adjust belief
probabilities. The specific implementation details are dis-
cussed in next section.

Updating Beliefs
An important aspect of planning in a partially observable
scenario is the ability to refine a set of beliefs regarding the
current world state. This is completed through inference af-
ter observing some aspect of the world or action of an agent.
As by definition, a POMDP is in part defined by a set of
probabilities for observations made in each potential state.

Traditionally, beliefs are revised using the observation his-
tory and Bayes Theorem:

Pt(si|o) = Pt−1(si)×
Pt−1(o|si)∑

j Pt−1(sj)× Pt−1(o|sj)
(1)

Working with teammate whose action selection mecha-
nism is unknown to an agent, we must consider an approxi-
mation to the observation probabilities of certain actions, as
the likelihoods are not explicit. If our set of potential models
included additional value for preferences of various targets,
we could use P (o|s) ∝ eVa,m , as suggested by (Ito, Pyna-
dath, and Marsella 2007). However, in order to avoid adding
unnecessary complexity to our choice of models, we utilize
a simple exponentiated loss function, which can be inter-
preted as a Bayes rule update in certain contexts (Bousquet
and Warmuth 2003). Here, we define our loss function, Li,
to be 0 if the model for goal i predicts the observed action,
o, and 1 otherwise.

Pt(si|o) = Pt−1(si)×
e−Li∑

j Pt−1(sj)× e−Lj
(2)

Furthermore, as the concept of an agent with shifting
priorities has natural similarities to shifting experts/online-
learning problems, we borrow the concept of modifying our
update step by additionally adding a mix of past posteriors,
as described in (Bousquet and Warmuth 2003). This mod-
ified approach bears much resemblance to the Polynomial
Weights algorithm (Blum and Monsour 2007) as used in pre-
vious work in ad hoc teams (Barrett et al. 2012). In the latter
approach, using a polynomial weight slows the belief con-
vergence to a particular teammate model such that no model
is discarded prematurely; however, given a sufficiently long
series of observations supporting one model, the probabili-
ties can still diverge sufficiently to prohibit a change in be-
liefs in a reasonable amount of time. In contrast, by mixing
the updated belief vector with the initial uniform belief vec-
tor, we are able to enforce upper and lower bounds on the
possible values of the agent’s belief probabilities. This en-
sures the capacity for an unlikely target to surpass the most
likely target quickly given a small number of appropriate ob-
servations. Equation 3 shows the mixing alteration.

Pt(si|o) = βPt=0(si) + (1−β)
Pt−1(si)× e−Li∑
j Pt−1(sj)× e−Lj

(3)

Evaluation
To evaluate our approach, we test various belief convergence
strategies within a two member team version of the pursuit
domain, Cops and Robbers.

Cops and Robbers
Cops and Robbers, first introduced in (Macindoe, Kaelbling,
and Lozano-Pérez 2012), is a form of the popular multiagent
pursuit scenario (Benda 1985) designed for teams consisting
of two members. Figure 2 shows the five tested mazes, a-e,



Figure 2: Mazes in Cops and Robbers, labeled a-e. Images from (Macindoe, Kaelbling, and Lozano-Pérez 2012).

differing in layout, the number of robbers, and the inclusion
of one-way doors, which can punish poor action selection by
lengthening paths to targets as well as by trapping agents, as
in maze b. In order for the agents, “cops” in this domain, to
successfully complete the game, they must coordinate to si-
multaneously be present within the cell of a targeted robber,
at which point they receive a score of 100 − stepsTaken,
where stepsTaken is the number of rounds that have passed
in the game. Cops and Robbers is an inversion of the tradi-
tional pursuit problem, where an agent must coordinate with
three other agents to trap a single target. Here, an agent must
collaborate with one teammate to capture one of the robbers,
but there is uncertainty as to which is currently being pur-
sued by the teammate.

Two notable works exist in this and a similar domain.
Macindoe et al. (2012) introduced Cops and Robbers as a
domain for testing sequential planning for assistive agents;
however, the teammate agent in the evaluation chose a sin-
gle target at the start and never switched for the duration
of the game. Nguyen et al. (2011) previously used a similar
game, Collaborative Ghostbuster, and modeled the choice of
target as a Markov decision process, with transition proba-
bilities dependent on the resulting score of pursuing that tar-
get. The approach selects actions maximizing the expected
reward of pursuing each possible target, as weighted by the
belief probability of the teammate similarly pursuing the tar-
get. This strategy, however, can favor remaining near two
less likely targets rather than pursue the most likely target,
as pointed out in (Macindoe, Kaelbling, and Lozano-Pérez
2012).

As discussed earlier, reasoning over a set of models in a
pursuit setting has been explored in previous work. The un-
known model in such work is static, and a Bayes-style up-
date of the belief probabilities is often sufficient to identify
the correct one effectively. This paper explores the possi-
bility that the unknown model or goal driving a teammate’s
behavior is transient in nature, which poses two challenges:
identifying changes in behavior quickly and coordinating to
achieve that goal before another transition occurs.

Agents
For our tests, we implemented three teammates whose goal
remains uncertain to the agents. The teammates behave as
follows:

• A* Greedy - this agent pursues the closest robber at the
start of the game and never switches targets.

• Switch Once - this agent switches targets at a fixed point
in the game, on the eighth turn.

• Probabilistic - this agent switches with a probability of

p = 0.2× distance(target)∑
r∈robbers distance(r)

× |robbers| (4)

All teammates move toward their selected target using A*
path planning, with 10% noise in their actions.

We also implement several agents for reference as well as
for comparison of belief update strategy:

• UCT - plans using MCTS, exploring both agents’ actions
with UCT.

• Bayes - plans using UCT for its own actions but uses
single-target A* for each possible teammate goal. Up-
dates beliefs according to Equation 2.

• RAPID - Similar to Bayes, but updates with modified be-
lief update technique in Equation 3.

• Limited oracle - Knows the true target at each turn, even
after switches occur. However, it does not have prior
knowledge of when switches will occur.

Tests
Each pair of teammate and reasoning agent participate in
one hundred trials of each maze. Steps taken to complete
the game, beliefs of applicable agents, and targets of the
teammates are logged for analysis. We allow each UCT-
based agent one hundred game simulations per turn, with
root parallelization (Chaslot, Winands, and van Den Herik
2008) across four cores. Furthermore, our belief update uses
β = 0.85, an empirically chosen value.

Results
This section compares the performance of the RAPID agent
against the agent which revises its beliefs with a traditional
Bayes update. The plain UCT agent provides the base level
of performance we would expect with any of our UCT-
based agents, while the limited oracle agent demonstrates
that there may still be room for further improvement in a
few test cases. It should be noted that the results of the lim-
ited oracle agent could be unattainable, as the agent has ac-
cess to the teammate’s true target at every turn. Furthermore,
as the agent has no prescient knowledge of upcoming target
changes, it may be slightly more at risk of committing to a
poor decision early, as experienced in mazes b and d.



Bayes RAPID
Teammate n Average n Average p

a SwitchOnce 100 5.04 100 1.00 <0.001
Probabilistic 269 4.42 363 2.78 <0.001

b SwitchOnce 99 18.04 92 23.30 0.079
Probabilistic 369 12.96 472 11.72 0.145

c SwitchOnce 94 7.57 67 9.06 0.221
Probabilistic 454 12.92 356 8.10 <0.001

d SwitchOnce 100 15.87 100 11.75 0.085
Probabilistic 557 15.48 532 9.45 <0.001

e SwitchOnce 100 18.7 100 11.79 0.007
Probabilistic 506 8.85 396 6.09 <0.001

Table 1: Average actions observed before sidekick’s true tar-
get is most likely in agent’s belief distribution. Bold values
indicate significant results (α = 0.01).

Belief Recovery
Three metrics serve to evaluate our proposed approach: the
average number of observations required to revise an agent’s
beliefs to the appropriate target, the percentage of steps in
our tests in which an agent has correctly identified the target,
and the average number of steps required to capture it. Ta-
ble 1 reports the number of times in 100 trials the teammate
switched targets as well as the average steps required for the
agents to identify the change. The base UCT and limited ora-
cle agents are omitted as they do not possess a belief system.
The A* teammate is similarly absent as it never switched tar-
gets. With respect to belief recovery time, the RAPID agent
outperforms the Bayesian agent six of the ten relevant test
cases (α = 0.01). This provides direct evidence that our ap-
proach identifies changes in behavior more quickly than the
traditional method.

Accuracy
In regard to overall accuracy, the RAPID agent is found to
be correct more frequently in the majority of scenarios. It
is only outperformed by the Bayes agent in four instances,
as seen in Table 2. In this metric, steps where the correct
target probability is equal to that of another target are con-
sidered ambiguous and are counted as an incorrect identifi-
cation. This explains a portion of the low observed accura-
cies, particularly as the first few steps in each game are not
enough to distinguish targets. We note that pairings where
the RAPID agent has faster belief recovery but poor over-
all accuracy indicate that the approach can be susceptible to
noisy behavior, though this may be mitigated by tuning of
the β parameter. We leave optimal tuning of the parameter
to future work.

Steps Taken
Table 3 shows the average number of turns required to com-
plete each test case. In nine of the fifteen comparisons be-
tween the traditional belief update approach and RAPID, our
approach performs significantly better (α = 0.01). Only in
one of the remaining cases does the Bayes update version
achieve a significantly better score. The comparisons with

Bayes RAPID
Teammate n % Correct n % Correct p

a
A* 2188 17.69 1617 23.69 <0.001

SwitchOnce 3201 71.88 2794 80.96 <0.001
Probabilistic 2159 57.94 2476 64.01 <0.001

b
A* 3792 26.85 4181 25.52 0.089

SwitchOnce 3771 39.30 5100 34.27 <0.001
Probabilistic 3712 33.14 4029 38.07 <0.001

c
A* 2671 40.43 2522 33.51 <0.001

SwitchOnce 3472 60.77 2689 51.95 <0.001
Probabilistic 3533 42.37 2763 47.09 <0.001

d
A* 2516 14.63 2962 26.00 <0.001

SwitchOnce 6358 49.53 4927 48.81 0.227
Probabilistic 4412 45.42 5048 57.81 <0.001

e
A* 2527 14.88 1939 13.67 0.125

SwitchOnce 4480 35.71 3562 38.63 0.004
Probabilistic 3454 40.56 2885 35.94 <0.001

Table 2: Percentage of steps with correct target identified
by belief distribution. Bold values indicate significant results
(α = 0.01).

the vanilla UCT agent and the oracle version demonstrate
the benefit of modeling an uncertain teammate accurately as
well as show that in some cases, room for improvement per-
sists.

Conclusion & Future Work
Most existing work in ad hoc teamwork assumes a static
behavior or goal for the unknown teammate(s). This pa-
per introduces a variation of the pursuit domain in order to
evaluate approaches to working with an unknown teammate
whose goals and corresponding behavior can change period-
ically. Planning under our proposed changes to belief revi-
sions allows an agent to quickly recognize and adapt to al-
tered behavior indicative of a goal switch. Faster belief con-
vergence to the correct goal boosts overall accuracy of the
agent’s predictions, which are directly leveraged in planning
for better multiagent coordination. Secondly, this initial em-
pirical evidence suggests that reasoning quickly over a set
of independent models may provide an acceptable approx-
imation to modeling higher level reasoning of an unknown
teammate, as long as its base goals can be inferred.

Though this paper proposes an effective technique for this
problem within ad hoc teamwork, it raises many interest-
ing questions to be examined in future work. Furthermore,
some of the recent work has focused on learning a team-
mate’s model while cooperating. Learning individual goals
that an agent may work toward and cycle between would be
a substantial improvement. As the current teammates tested
have purely self-interested behaviors, we must consider how
collaborating with a teammate with recursive modeling ca-
pacity may be affected by our technique. Another increase
in complexity would result from considering teammates that
pursue two or more goals simultaneously. The combinato-
rial number of possible subsets of goals provides a novel,



Teammate Bayes RAPID p UCT P.K.

a
A* 21.88 16.17 <0.001 51.95 31.97

SwitchOnce 32.01 27.94 0.005 71.07 18.74
Probabilistic 21.59 24.76 0.006 64.89 25.91

b
A* 37.92 41.81 0.460 57.76 54.89

SwitchOnce 37.71 51.00 0.010 61.81 49.83
Probabilistic 37.12 40.29 0.378 56.6 41.48

c
A* 26.71 25.22 0.004 58.11 28.74

SwitchOnce 34.72 26.89 <0.001 67.58 35.88
Probabilistic 35.33 27.63 0.002 71.78 31.74

d
A* 25.16 29.62 0.068 69.65 39.94

SwitchOnce 63.58 49.27 0.001 84.08 75.97
Probabilistic 44.12 50.48 0.043 81.05 42.39

e
A* 25.27 19.39 0.004 62.08 11.38

SwitchOnce 44.80 35.62 <0.001 81.24 20.17
Probabilistic 34.54 28.85 0.009 73.21 19.70

Table 3: Average steps taken by the agent/teammate pair to
complete the maze. Bold values indicate significant differ-
ences (α = 0.01) between Bayes and RAPID.

unexplored area for further research.
Human-agent teamwork is one potential application of us-

ing a set of basic goals to approximate a high level behavior.
Existing work for modeling human cognition often utilizes
theory of mind concepts (Whiten 1991) or relies on learned
or hand-authored models. If an agent is to assist a human in
an environment that has clear potential goals, our approach
may prove advantageous. It is likely easier to design pre-
dictive models for simple goals, compared to more complex
cognitive models. Furthermore, more responsive switching
of tasks may be an acceptable response to the high-level de-
cision making of the human teammate. It forgoes much com-
putation on the larger body of tasks to be completed in favor
of coordinating on the task at hand. Naturally, this puts the
agent in a supporting role while a human takes the lead in
prioritizing goals.
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