
Converging to a Player Model In Monte-Carlo Tree
Search

Trevor Sarratt David V. Pynadath Arnav Jhala
University of California at Santa Cruz

Santa Cruz, California 95064

tsarratt@soe.ucsc.edu

USC Institute for Creative Technologies

Los Angeles, California 90094

pynadath@usc.edu

University of California Santa Cruz

Santa Cruz, California 95064

jhala@soe.ucsc.edu

Ahstract-
Player models allow search algorithms to account for
differences in agent behavior according to player's
preferences and goals. However, it is often not until
the first actions are taken that an agent can begin
assessing which models are relevant to its current
opponent. This paper investigates the integration of
belief distributions over player models in the Monte
Carlo Tree Search (MCTS) algorithm. We describe
a method of updating belief distributions through
leveraging information sampled during the MCTS.
We then characterize the effect of tuning parameters
of the MCTS to convergence of belief distributions.
Evaluation of this approach is done in comparison
with value iteration for an iterated version of the pris
oner's dilemma problem. We show that for a sufficient
quantity of iterations, our approach converges to the
correct model faster than the same model under value
iteration.

I. INTRODUCTION

Evaluating a player's actions and infering a strategy or

player type are useful capabilities for an agent within a game.

When human players interact in a virtual environment, they

can quickly deduce, via their experience and expectations,

both what another player is intending to do and the reasons

behind such actions. This allows for quick reactions and

counters in competitive games as well as cohesive teamwork

in collaborative settings. It is natural, then, that AI in games

can benefit from having similar reasoning ability.

It is no surprise that humans can act in unexpected ways

within a game, often in a manner considered sub-optimal from

the perspective of an AI, given a relatively straightforward

goal such as navigating to the end of a level, defeating an

opponent, or maximizing a score. Players may have ulterior

motives within a virtual environment based on their own

preferences and goals. For games, the use of models with

explicit representation of beliefs and preferences of agents

can allow agents to predict such behavior. Player modeling

is a common pursuit in artificial intelligence, one with many

challenges such as how to learn, predict actions of, plan

against, and adapt to changes in another agent's behavior.

In this paper, we are primarily concerned with the capability

of an agent to efficiently plan under the uncertainty of a

player's model as well as converge to a correct player model

based on the actions taken by the player. Considering many

978-1-4799-3547-5/1411.00 ©2014 IEEE

potential opponent models can restrict game tree pruning,

which in turn can impact performance [1]. Fast convergence

to the correct model diminishes the uncertaintly, allowing the

agent to plan more effectively.

Model recognition in multi-agent domains exists as an

alternative to building a model during play. Given a set of

possible models, observations on actions taken by a target are

used to inform an agent of the target's likely model. Model

recognition can then be performed by using a classifier [2], [3]

or by updating a probability distribution over models [4]-[6].

In the latter case, one must be able to evaluate the probabilities

of observed actions given the candidate models.

This paper investigates the application of player models to

Monte-Carlo Tree Search, a sampling-based, anytime planning

algorithm that been proposed as a promising technique for

agent planning in board and video games [7]. We characterize

how various parameters of MCTS affect the convergence of

beliefs over models. Furthermore, we describe how informa

tion used in MCTS can be leveraged for belief updates with

modifications to the algorithm. This provides the benefit of

inferring which model an agent may be using while simulta

neously planning in the game's state space.

For evaluation, we adapt an iterated form of the prisoner's

dilemma (IPD) such that an agent can have hidden incentive to

favor one of the two actions, collusion or betrayal. We test the

ability of our MCTS adaptation to converge correctly and effi

ciently to the appropriate model. We also compare the results

against an established social simulation tool, PsychSim [8],

which employs value iteration-a full-width search-for the

same purpose. IPD provides an established, well-studied game

with discrete actions, useful for anlayzing belief convergence,

whereas a more complex domain may add confounding factors

or noise to our results as well as limit the application of value

iteration for comparison.

II. POMDPs

In the case where agent models are finite, static, and delib

erate in action, the problem of uncertainty in an agent's true

model can be conceptualized as a single-agent partially ob

servable Markov decision process (POMDP) [9]. The POMDP

representation has been applied in a wide variety of domains

[10] and has frequenly been used for modeling players in

games [11]-[14]. For convenience and consistency, we will

adopt the representation of a POMDP while discussing belief

distributions as applied to MCTS.

A POMDP is a generalization of an Markov decision

process (MDP) where some aspect of the world state is not

directly observable to an agent. In this paper, we restrict

uncertainty to the model used by a deterministic agent in the

game. In this framework, a POMDP can be represented as a

tuple (S, A, fl, B, R), where

• S is the set of world states, comprising of both the game

state and the type of the agent in question. Due to the

latter uncertainty, an agent cannot directly observe the

full world state.

• A is the set of actions available to the agents.

• fl defines a set of observations on actions occuring in

the game. In this case, we allow for all actions to be

observable at all times.

• B describes the set of belief states possible given an

initial state and a set of observed actions.

• R relates the COlmnon definition of a reward function in

MDPs, where R : S x A -+ R
In order to plan successfully in an POMDP, agents must

utilize an observation history to update their beliefs over time.

As we define observations to be derived from actions taken in

the game, a history can be defined as ht = (al,a2, ... at).
Beliefs are then described as a distribution over possible

states given those histories, or bt = Pr (s I ht) I;j s E S.
The goal of planning in a POMDP is to find a policy 7r

maximizing the agent's expected reward, as given by j''' (bo) =

L:oE[R(st,at)lbo,7r]. This can be done by searching

through the belief space to identify the optimal value function,

V*(bt) = maxaEA [R(bt,a) + LOEOfl(olbt,a)V*(bt+d],
where fl is a probability distribution over observations.

III. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search is a search algorithm based on

Monte-Carlo simulations within a sequential game. Through

evaluating potential states by averaging simulation outcomes,

MCTS holds several advantages over other search methods.

By sampling, it bypasses the curse of dimensionality of large

numbers of state transitions. Black box simulations can be

used for problems too complex to represent fully, and it can

be used effectively without prior domain knowledge [15]. In

addition, it converges to an optimal policy in fully observable

and partially observable problems, given an appropriate explo

ration function [16], while also being an anytime approach.

As previously mentioned, MCTS has been proposed as a

promising approach for developing an action policy within

the state spaces of board and video games [7] and has already

seen successful application to games such as computer Go

[17], General Game Playing [18], poker [19], and Ms. Pac

Man [20]. In 2009 FUEGO, an MCTS Go program, beat a

top human professional at 9x9 Go [21].

MCTS performs a large number of simulations of a game,

from the current player state to the end of the game. As a

new simulation begins searching through the game tree, MCTS

considers information gathered from previous playthroughs.

Selection -Expansion -Simulation-Backpropagation

Apply selection
function recursively

until leaf node Is
reached.

Add a new
node with an
une.xplored

action.

Sim ulate :
remainder I

of game. I
Propaga[e the

result back
through the tree.

Fig. 1: Outline of Monte-Carlo Tree Search

Specifically, in each step of the game, MCTS selects the next

action with a bias toward those with a higher success rate

for the player. When an action is taken for the first time, the

rest of the game is played out randomly. The resulting score

or reward value is then back-propogated through the explored

nodes. Over many simulations, the program focuses on better

moves, leading to farther look-ahead without giving as much

consideration to inferior moves. We will now describe this

process in more detail.

In an MCTS game tree, every node represents a state of the

game. Each node aggregates statistics from the simulations

that have previously passed through that particular node.

Specifically, the nodes contain two pieces of information:

• Value The value of the game state. Typically, this is the

average of the cumulative rewards of all simulations that

visited the node.

• Visit Count The number of simulations that have reached

the game state represented by the node.

For MCTS, the root node represents the starting state of

the game and is the only node present in the tree initially.

By repeating four steps outlined in Figure 1, the tree is

explored until a number of maximum simulations has been

reached or there is no time remaining for exploration. We will

describe these steps in detail as well as discuss some of the

implementations we have chosen for this paper:

• Selection Potential actions at each node are selected in

a fashion that balances exploration and exploitation. The

idea behind such a heuristic is to progress deeper into

the game tree through actions with higher expected value

(exploitation) while periodically trying less favorable

moves that may have yet unseen value (exploration). We

use Upper Confidence Bounds applied to Trees (UCT),

a popular, efficient algorithm for guiding MCTS [15]. In

this search technique, an action is selected according to

the following criteria:

{ {2llln;} a* = argmaxaEA(s) V(s,a) + Cv ----;:;:-

where a E A (s) represents an action within the set of

available actions for state s, V(s, a) is the average value

for action a stored in the tree node representing state s,
np is the number of visits for the current node, and na

is the visit count for the child node resulting from the

action. C is a parameter to tune the search, where higher

values encourage more exploration.

• Expansion When a leaf node is reached, a new action is

selected for expansion. The resulting state is added as a

new node to the tree. In this way, the tree is expanded

by one node for each simulation.

• Simulation From a newly added node, the remainder of

the game is performed by selecting actions according to a

set policy until the game ends. For this paper, we simulate

the remainder of the games by selecting actions randomly.

• Back-propagation Once the end of the simulated game is

reached, we update each node that was traversed during

the simulated play through of the game. The visit count

for each node is incremented, and the endgame values

are incorporated into each node's cumulative average.

When the maximum number of simulations has been

reached, an action is returned. This can be the action with

the highest expected value or that with the highest visit count.

We choose the latter approach.

IV. ALTERATIONS TO MCTS

MCTS in its basic form does not account for partial ob

servability in a world state of a game. Various adaptations

of MCTS have been proposed to handle types of partial

observability. Cowling et al. [22] apply MCTS to games with

hidden information and uncertainty, but do not address belief

convergence and inference. Silver and Veness [16] introduced

a variation of UCT search for general application to POMDPs

using a particle filter to update beliefs. The approach was

empirically demonstrated on the games battleship and partially

observable PacMan. A comprehensive survey of alterations to

Monte-Carlo Tree Search for diverse application can be found

in [23]. We outline our enhancements to the algorithm in this

section.

Reward Scaling

In common applications of MCTS, a binary winlloss re

sult is a sufficient value to track and maximize throughout

the space exploration. However, as we intend to work with

domains with continuous rewards, it is clear that a static

exploration factor in MCTS may have reduced effectiveness

over time with a cumulative, unbounded reward. To keep both

exploration and exploitation in balance, it is necessary to either

adjust the expected values within the game tree or devise a

method of choosing an exploration factor dynamically.

To solve this problem, before initiating MCTS, we sample

the game with random moves a set number of times. This

gives us a rough distribution of possible reward values. We

scale expected values by the difference of the maximum

and minimum values sampled beforehand. These scales are

calculated per model, as each model may have reward values

of an arbitrary magnitude.

Node Information

In MCTS, each node records the average value for the game

state. For multi-agent problems, this value corresponds to the

expected value for the agent who acted immediately prior to

the current game state. The heuristic used to select an action

can then maximize the expected value for each agent during

their respective turns. Under the uncertainty of which model an

agent is using, it is necessary to reason over the results of each

action in the context of each potential model. Therefore, rather

than retaining a single expected value for an agent, nodes keep

a vector of values corresponding to the set of rewards achieved

by each independent preference model of an agent.

Node Selection

Since each node now contains multiple values correspond

ing to the multiple possible agent models, we must reconsider

the method of selecting actions while exploring the game tree.

It is desirable to retain the benefits provided by UCT, namely

balancing exploitation of previously observed actions with

exploration of potentially inferior moves. Yet, the agent must

also consider such actions in the context of various models. In

order to accomplish both objectives during the selection phase,

we propose sampling a single model according to the current

belief distribution, then performing the UCT selection over

actions using expected values specific to the chosen model.

Back-propagation

Rather than propagating results of one model of an agent

back through the game tree, each model's rewards are tracked

through the simulation of the game. Each of these results

is then propagated to the visited nodes for the purpose of

updating their estimated values.

Belief Update

As in existing approaches to mental modeling [6], we

employ a Bayesian approach to updating belief distributions

over said models. Starting with an initial distribution of model

probabilities, we update according to Bayes' Theorem, as seen

in Equation 1 where m represents a model and a indicates an

action.

P(mla) _ P(m) x P(alm)
- Li P(mi) x P(almi) (1)

The difficulty with this particular update strategy is deter

mining P(alm), the probability of an action given a particular

model. Several methods of calculating such probability can be

found in [6]. For fairness of comparison with PsychSim in our

test case, we adopt a distribution model given by:

(2)

V. EVALUATION

To evaluate our implementation, we tested the approach

on a sequential version of the iterated prisoner's dilelmna

problem with full visibility only of actions taken, i.e. no direct

observation of the other player's value model. The goal of an

agent, then, is to infer the correct player model of the other

agent and adapt its own strategy accordingly.

In this setup, two players must complete the prisoner's

dilemma scenario twenty times. Each player has two actions,

defect or remain silent. If only one player betrays his part

ner, he receives a high reward while his partner suffers a

low reward. If both players betray the other, both receive a

moderately low reward. If both players remain silent, they each

receive a moderately high reward. The specific payoffs used

in our tests are given in Table I.

Agents

TABLE I: Payoff matrices.

Base game.

Betray Silent
Betray

I
2,2

I
4,1

Silent 1--'1·,4-+-"'3",3,......, '----'-_ .l...---'----'

Incentive for left player to betray.

Betray Silent
Betray

I
3,2

I
5,1

Silent 1--"'0·,4-+-"'2",3,......, '----'-_.l...---'----'

Incentive for left player to remain silent.

Betray
Silent

Betray
1,2
2,4

Silent
3,1
4,3

The game is setup with two agents of heterogeneous ca

pabilities. The uncertain agent, who always plays first in

each scenario, must assess his opponent's model over the

course of the game and predict his decisions effectively.

The second agent only assesses the current scenario, but he

also has a hidden additional reward either for betraying the

first player or staying silent, depending on the corresponding

assigned model. Furthermore, while each model's expected

reward distribution results in a pure strategy from a game

theoretic standpoint, we instead sample the second agent's

action according to the distribution given by Equation 2.

The stochastic sampling of actions allows for selection of

suboptimal actions for the second agent, which will hinder

the first agent's ability to surmise the second's true model.

PsychSim

We compare MCTS with an existing social simulation tool,

PsychSim. PsychSim employs value iteration to solve for agent

policies that maximize expected reward based on its goals [24].

At each time point, an agent, i, computes a value, Va(bt),
of each action a, given its beliefs, bt. A transition function

projects the effects of actions of other agents, 'iT ,i, in future

states, and each state is evaluated against the agent's goals, g.

Va(bD = gi' b! + L V(bt+l)P(bt+llb�+l,a,'iT'i(bt+l))
b'-+l

The depth at which agents model the game state is bounded

by a finite horizon, limiting their lookahead. As value iteration

is a full width algorithm, the agents complete an exhaustive

analysis of all reachable states within the limited horizon.

Information Consideration

It should be noted that MCTS has a distinct information

advantage over value iteration by simulating the remainder of

a game beyond the most recently expanded node. This benefit

comes at the cost, as simulating the entire length of a game

requires more time. The time requirements are linear in the

number of passes through the tree and length of the game.

The rollout process is fast, however, and can be halted at a

finite horizon if runtime is a concern. Value iteration, on the

other hand, has a complexity linear in the number of actions

and quadratic in the number of states, which quickly becomes

intractable for application beyond a small game. Furthermore,

we show here that even if value iteration could incorporate

information in the form of a random action simulation beyond

its finite horizon, belief convergence would be unaffected.

Lemma 1. For the game IPD and the Boltzmann distribution

of action probabilities, the addition of a random action sim

ulation phase beyond the finite horizon considered in value

iteration does not affect the expected Bayesian belief update

over models.

Proof The value of an action can be decomposed into the

cumulative, discounted reward accumulated up to the finite

horizon and the reward achieved during the rollout phase.

Under this observation, Equation 2 becomes

eE[V" (m)]+E[Vr(m)]
P(aim) = '" eE[Vh, (m)]+E[Vri (m)]

L...-a,EA
eE[Vh (m)] eE[Vr(m)]

'" eE[V" (m)] eE[Vr (m)]
L...."aiEA t t

Furthermore, we observe that for each round of IPD, the

agent is in a world state independent of the actions taken

up until that point. Additionally, given that during the rollout

procedure, actions are sampled uniformly, we know that the

expected reward for rollouts of equivalent length (in rounds)

is identical. This leads to the following reduction:

E[Vri(m)] = E[Vrj(m)] where ITil = ITjl therefore,

eE[Vri (m)]
= eE[Vrj (m)]

eE[Vh(m)]eE[Vr(m)]
P(aim) - ------==,.---,--....,.,. - eE[Vr(m)] '" eE[Vhi (m)]

L...-aiEA
eE[Vdm)]

P(alm) = '" eE[Vh,(m)]
L...-a.,EA

With P(alm) shown to be unchanged by a random simu

lation phase in value iteration, it is trivial to show that the

updated P(mla) given by Equation 1 is similarly unaffected.

Horizon (VI) - Nodes Searched (MCTS)

Model Approach 1-4 2-S 3 -16 4 -32 5 -64
Loyal MCTS 13.14(±O.S6) 12.S7(±O.79) 13.12(±O.63) 13.4S(±O.4S) 12.62(±O.3S)
Loyal VI 13.2(±O.64) 13.19(±O.60) 13.16(±O.65) 13.03(±O.62) 13.07(±O.66)
Betray MCTS 12.95(±O.7) 12.92(±O.S2) 12.05(±O.SS) 12.9S(±O.92) 12.56(±O.39)
Betray VI 12.33(±O.71) 12.1S(±O.7S) 12.5(±O.79) 12.53(±O.61) 12.49(±O.S7)

TABLE II: Cumulative reward (and standard deviation) at the end of the game by opponent model, approach, and states

explored.

Experimental Setup

In this section, the MCTS implementation with belief up

dates over models is evaluated alongside a value iteration

implementation provided by PsychSim. For comparison, the

MCTS variant was restricted to expanding a number of nodes

equal to the number of reachable game states within a set

finite horizon used by PsychSim. The results of each test were

compiled over fifty games.

In our first experiment, we vary the number of expanded

nodes used by MCTS before returning a decision. MCTS

is a technique which improves with an increasing number

of iterations, though at the cost of time. Given the binary

decisions-betray or remain silent-at each stage, we restrict

the number of possible nodes to powers of 2. These values

then correspond to the horizon used by PsychSim, in that 32

nodes would be comparable to value iteration exploring all

states up to a horizon of 4. Two scenarios are tested, one for

each possible model of the second player.

The second parameter tested in this work is the effect

of the exploration factor on the updated belief distributions.

Lesser values of the exploration factor diminish its impact in

affecting which nodes are explored, resulting in a more greedy

search. Similarly, a large exploration factor would emphasize

exploration, expanding nodes higher in the game tree, though

at the cost of accuracy for longterm play. As before, tests

were completed for each of the models of the second player.

Since value iteration is a full-width planning algorithm, no

corresponding parameter exists, and therefore PsychSim is

omitted from these tests.

V I. RESULTS

End game results for MCTS and value iteration are dis

played in Table II. As value iteration finds optimal policies

for discounted reward, finite horizon POMDPs, the simulated

games with PsychSim provide an approximation of the highest

score we can expect any approach to achieve given both the

uncertainty of model and stochastic selection of action by the

opponent. The results serve simply to illustrate that the MCTS

agent achieves a comparable score.

In both tested models, where the second agent either has

added incentive to be loyal to or betray the first agent, we ob

serve similar belief convergence patterns. The number of nodes

used to search the game's state space has a direct impact on

the rate of belief convergence. As increased sampling provides

more accurate expected values for actions, the belief update

strategy is able to converge more readily. In comparison, as

the calculations for PsychSim's value iteration end at a finite

horizon, no information regarding the remainder of the game

is included. As each iteration of MCTS samples the entire

duration of the game, the disparity between resulting scores

of the two simulated models is likely larger than that calculated

by the shorter horizon of value iteration. This, in turn, is

reflected in the estimated probability of an action given a

model (Equation 2), which is used to calculate the new belief

distribution. We see this effect in this sharp convergence of

more highly sampled games (nodes � 16).

«

'"

� 0

:0
'" .0 ""
e 0
D-
�
a;
'" 0
ro
i;' ...J <0

0

'"
0

,
,

i ,
i '
! '
.,
,
.,

,

,
,

,
...... ," --- - _ ... -,

' - ... -

VI-5
- VI-4
- VI-3
- VI-2
- VI-1

... MCTS-64
I ... _�CTS-32

I ___ MCrs""'1s...
... - _, --- MCTS-8

--- MCTS-4
"'... ... - - -

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round

Fig. 2: Average convergence of beliefs when the opponent

behaves loyaly. Note: MCTS-64 and MCTS-32 overlap.

0

'"

� 0
:0
'" .0 ""

� 0

�
a;
'" 0
>-
g
" <0 '" 0

'"
0

,.

I

,
I,

,

,
:,

. . - . . -.-.- . . -�-.-- . . _-.;:.

... - --_ ...

,
,

,

... ... - - ...

...... ... - - ...

- VI-4
- VI-3
- VI-2
- VJ-l

MCTS-64
MCTS-32

... --- MCTS-16
........ ... ---:.. �C'rS-:8-

... � � :: ---:. - MCTS-4 ...

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round

Fig. 3: Average convergence of beliefs when the opponent has

incentive to betray. Note: MCTS-64 and MCTS-32 overlap.

When the exploration value is varied, belief convergence is

directly affected. With large exploration factors, more nodes

are added earlier in the game tree. This has two main effects.

First, MCTS expends more resources examining branches that

are irrelevant in the course of the game. Inflating the likelihood

of these branches directly affects the resulting values for the

agents and, in turn, the probabilities used to update the belief

distribution. Second, exploration of nodes earlier in the game

inflates the proportion of randomly selected moves for the

simulation phase of MCTS. This shift produces more noise

in resulting outcomes, again affecting the probabilities used

to calculate the belief update. These factors force MCTS to

converge more slowly when exploration of actions is empha

sized.

�

0>
0

�
:c <Xl '" 0 .c
e
Q. :i 0
W
aJ
rn '"
>- 0 0 ...J '"

0

...
0

... - - - ...
- c=O.1

- -- c= 1

c=2

- -- c=5

c= 10

o 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20

Round

Fig. 4: Average convergence of beliefs with various explore

factor values when exposed to loyal behavior.

�

0>

�
0

:c <Xl il 0

� � 0
W
aJ '" >-
� 0 "
aJ '"

0

...
0

.. '" '------ ...
- c=O.1

--- c= 1

c=2

--- c=5

c= 10

.

--.-, " :JY.'
- /" -'" ,-

" - '" ,,--
... ' ... -- ... ' _ --

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round

Fig. 5: Average convergence of beliefs with various explore

factor values when exposed to betrayal behavior.

V II. DISCUSSION

It is important to note the potential pitfall of fast con

vergence to a single model. The caveat in this setup is that

once the distribution aligns to a model, the probabilities for

opposing models converge to zero (with numeric round-off).

Under our Bayesian update scheme, it would be difficult to re

cover if the belief distribution converged to an incorrect model.

However, in addition to tuning the number of nodes searched

and the exploration factor, a potential implementation could

also adopt a more conservative estimation of the probability

of an action given a model, P(alm). Alternative estimations

can be found in [6]. Similarly, one could adjust the update

mechanism to incorporate polynomial weights. This process

has been shown to be near optimal in [25].

Future Work

Fast identification of a player model is a rich problem full

of areas for exploration. We have shown here how adapting

information present within MCTS can be leveraged to identify

a player's model given his or her actions. But how well

can an agent perform in cases where the set of models is

incomplete or when the models considered are themselves

imperfect descriptors of behavior? As previously noted, game

designers and AI researchers alike must take precautions to

avoid prematurely converging to an incorrect model given a

potentially noisy set of actions or observations.

Additionally, we can consider relaxing various assumptions

present in this work. How does this analysis change under a set

of models that are not static over time? How do the specifics

of a domain relate to choice of formulation for P(alm)?
Furthermore, we envision the eventual necessity to support

fully recursive mental modeling, allowing application to do

mains involving Theory of Mind. An agent may someday need

to consider not simply what a player might do according to

his or her own preferences, but also how the player's beliefs

on the agent's behavior affect his or her planning. This line

of reason extends to an arbitrary depth of recursive belief

modeling. Adding support for this type of reasoning is non

trivial, however, as it significantly increases the complexity of

the problem [26] and, therefore, may limit its potential for

application in games.

V III. CONCLUSION

This paper adapts Monte-Carlo Tree Search to the task

of planning under uncertainty of a player's model, as well

as characterizes how the exploration/exploitation parameter

and number of simulations affects belief convergence. We

demonstrate how information already tracked in MCTS can be

used for updating such belief distributions, given a sufficient

number of passes. The results show that asymmetric tree

growth allows for more informative inference over full-width

approaches. Moreover, further tuning of the convergence rate

is made possible by the parameters specific to MCTS.

REFERENCES

[1] D. Carmel and S. Markovitch, "Pruning algorithms for multi-model
adversary search," Artificial Intelligence, vol. 99, no. 2, pp. 325-355,
1998.

[2] G. Synnaeve and P. Bessiere, "A bayesian model for plan recognition
in rts games applied to starcraft. " in Proceedings of the Seventh Ar
tificial Intelligence and Interactive Digital Entertainment International
Conference (AllDE 2011), 2011.

[3] B. G. Weber and M. Mateas, "A data mining approach to strategy
prediction," in IEEE Symposium on Computational Intelligence and
Games. IEEE, 2009, pp. 140-147.

[4] 1. Zhang, "Building opponent model in imperfect information board
games," TELKOMNIKA Indonesian Journal of Electrical Engineering,
vol. 12, no. 3, 2014.

[5] P. Riley and M. Veloso, "Recognizing probabilistic opponent movement
models," in RoboCup 2001: Robot Soccer World Cup V. Springer,
2002, pp. 453-458.

[6] 1. Y. Ito, D. V. Pynadath, and S. C. MarseUa, "A decision-theoretic
approach to evaluating posterior probabilities of mental models," in
AMI-07 workshop on plan, activity, and intent recognition, 2007.

[7] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, "Monte-carlo tree search:
A new framework for game ai. " in Proceedings of the Fourth Artificial
Intelligence and Interactive Digital Entertainment International Confer

ence (AllDE 2008), 2008.
[8] S. C. Marsella, D. V. Pynadath, and S. 1. Read, "Psychsim: Agent

based modeling of social interactions and influence," in Proceedings of
the international coriference on cognitive modeling. Citeseer, 2004, pp.
243-248.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, "Planning and
acting in partiaUy observable stochastic domains," Artificial intelligence,
vol. 101, no. 1, pp. 99-134, 1998.

[10] K. P. Murphy, "A survey of pomdp solution techniques," UC Berkeley,
Tech. Rep., 2000.

[11] M. Ramirez and H. Geffner, "Goal recognition over pomdps: Inferring
the intention of a pomdp agent," in Proceedings of the Twenty-Second
international joint coriference on Artificial Intelligence-Volume Volume
Three. AAAI Press, 2011, pp. 2009-2014.

[l2] O. Macindoe, L. P. Kaelbling, and T. Lozano-Perez, "Pomcop: Belief
space planning for sidekicks in cooperative games." in Proceedings of
the Eighth Artificial Intelligence and Interactive Digital Entertainment
International Conference (AllDE 2012), 2012.

[13] B. Ng, C. Meyers, K. Boakye, and 1. Nitao, "Towards applying
interactive pomdps to real-world adversary modeling." in Innovative
Applications in Artificial Intelligence (IAAl), 2010, pp. 1814-1820.

[14] C. T. Tan and H.-I. Cheng, "An automated model-based adaptive
architecture in modem games." in Proceedings of the Sixth Artificial
Intelligence and Interactive Digital Entertainment International Confer
ence (AllDE 2010), 2010.

[15] L. Kocsis and C. Szepesvari, "Bandit based monte-carlo planning," in
Machine Learning: ECML 2006. Springer, 2006, pp. 282-293.

[l6] D. Silver and 1. Veness, "Monte-carlo planning in large pomdps," in
Advances in Neural Information Processing Systems, 2010, pp. 2164-
2172.

[17] H. Yoshimoto, K. Yoshizoe, T. Kaneko, A. Kishimoto, and K. Taura,
"Monte carlo go has a way to go," in AMI, vol. 6, 2006, pp. 1070-
1075.

[l8] H. Finnsson and Y. Bjornsson, "Simulation-based approach to general
game playing." in MAl, vol. 8, 2008, pp. 259-264.

[19] M. 1. Ponsen, G. Gerritsen, and G. Chaslot, "Integrating opponent
models with monte-carlo tree search in poker." in Interactive Decision
Theory and Game Theory, 2010.

[20] D. Robles and S. M. Lucas, "A simple tree search method for playing
ms. pac-man," in Computational Intelligence and Games, 2009. CIG
2009. IEEE Symposium on. IEEE, 2009, pp. 249-255.

[21] M. Enzenberger, M. Muller, B. Arneson, and R. Segal, "Fuegoan open
source framework for board games and go engine based on monte
carlo tree search," Computational Intelligence and Al in Games, IEEE
Transactions on, vol. 2, no. 4, pp. 259-270, 2010.

[22] P. I. Cowling, E. 1. Powley, and D. Whitehouse, "Information set monte
carlo tree search," Computational Intelligence and Al in Games, IEEE
Transactions on, vol. 4, no. 2, pp. 120-143, 2012.

[23] c. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, "A
survey of monte carlo tree search methods," Computational Intelligence
and Al in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1-43, 2012.

[24] D. V. Pynadath and S. C. Marsella, "Psychsim: Modeling theory of mind
with decision-theoretic agents," in Proceedings of the 19th International
Joint Conference on Artificial Intelligence (lJCAl 2005), vol. 5, 2005,
pp. 1181-1186.

[25] A. Blum and Y. Monsour, "Learning, regret minimization, and equilib
ria," in Algorithmic Game Theory. Cambridge University Press, 2007,
ch. 4.

[26] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, "The
complexity of decentralized control of markov decision processes,"
Mathematics of operations research, vol. 27, no. 4, pp. 819-840, 2002.

