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Abstract

Coordination with an unknown human teammate is a notable
challenge for cooperative agents. Behavior of human players
in games with cooperating AI agents is often sub-optimal and
inconsistent leading to choreographed and limited coopera-
tive scenarios in games. This paper considers the difficulty of
cooperating with a teammate whose goal and corresponding
behavior change periodically. Previous work uses Bayesian
models for updating beliefs about cooperating agents based
on observations. We describe belief models for on-line plan-
ning, discuss tuning in the presence of noisy observations,
and demonstrate empirically its effectiveness in coordinating
with inconsistent agents in a simple domain. Further work in
this area promises to lead to techniques for more interesting
cooperative AI in games.

Introduction
Effective teamwork relies on coordination of individual
team members which, in turn, requires understanding of the
goals, intentions, and skills of each team member. There are
different levels of complexity in which these can be mod-
eled for an AI agent interacting with a human. In the sim-
plest form these could just be assumed and hard coded so
that the agent assumes the human is following exactly the
most obvious, immediate goal. A slightly more sophisti-
cated model would have the agent observe actions of the hu-
man collaborator and refine a belief model about the inten-
tions of the player. While both cases will support specific in-
stances of well-designed collaborative situations, they may
fail for some players that are either unclear about their goal
or don’t have the skill (or plan) to achieve the goal.

Much of cooperation in games is based on the human
player in the lead role. From a player-centric design point
of view this is reasonable, but assuming AI to be a true peer
with equal participating in the collaboration could possibly
open up a design space of interactions that has yet been un-
explored leading to emergent cooperative play. To this end,
we first take a small but well-studied domain and provide a
detailed empirical analysis for the feasibility of the idea that

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an AI agent create and maintain a belief model of an incon-
sistently behaving collaborator in order to maximize success
in a cooperative task.

In this paper, we discuss an approach, Responsive Action
Planning with Intention Detection (RAPID), for updating
beliefs over an unfamiliar teammate’s goals with fast adapta-
tion to changes. It is often inaccurate to assume a teammate
will stick to a single goal throughout a task, especially when
state transitions provide incentive to switch, whether it be
an easier route to a goal or simply a more appealing one.
An ideal supporting agent should not only be able to assist
its teammate in achieving its goals but also be flexible in its
planning capacity to account for such changes in teammate
behavior, much like a human team member would. In order
to achieve this capacity in collaborative agents, it is neces-
sary to adjust how beliefs are revised by an agent planning
in a partially observable space. RAPID models the plan-
ning space as a partially observable Markov decision pro-
cess (POMDP). POMDPs provide a decision theoretic basis
for evaluating a plan of action under uncertainty. We re-
strict this uncertainty to the teammate’s behavior, such that
an agent must infer through observations the current goal.
Furthermore, unlike much of the existing work, we do not
assume a static hidden model. Instead, the teammate may
switch between many potential behaviors, and the task of
the agent is further complicated by identifying when these
transitions occur. This relaxation provides a fairly intuitive
representation of how a human player may adopt a new plan
on the fly according to his or her own preferences. When
enough observed evidence favors switching to a new goal,
the agent can adapt quickly and coordinate more effectively.

Related Work
Uncertainty and Complexity in Multi-Agent
Planning
One of the foremost hurdles for multi-agent team decision
problems is computational complexity. MDP-based scenar-
ios with uncertainty on both agents’ sides with regard to
world state and observation history as well as fully recur-
sive modeling between agents fall under the category of de-
centralized partially-observable Markov decision problems
(DEC-POMDPs). Even with a finite horizon assumption for
planners, the complexity of finding an optimal joint policy
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is NEXP-complete (Bernstein, Zilberstein, and Immerman
2000).

In the vein of simplifying the problem directly, providing
an agent with observation histories, either via the game itself
or free communication between agents, can allow for sce-
narios to be posed as single-agent POMDPs (Pynadath and
Tambe 2002), which have PSPACE complexity. POMDPs
have had considerably more advances than their decentral-
ized counterparts and are frequently solved via dynamic pro-
gramming (Barto 1998) or sample-based techniques (Silver
and Veness 2010).

Ad Hoc Teams in Pursuit Domains
In order to cope with this complexity problem, much of the
existing work in ad hoc multi-agent teams has assumed that
unknown teammates are non-recursive, typically either by
being best-response agents (Stone, Kaminka, and Rosen-
schein 2010) or working under some designed static model
(Barrett, Stone, and Kraus 2011). Barrett et al. 2011 utilize a
Bayesian update over known, static models to identify likely
models and plan accordingly. More recently, it has been
shown that ad hoc agents can benefit from learning from ex-
periences with initial teams, then using that knowledge when
collaborating with a new team (Barrett et al. 2012).

Problem Description
This paper considers the problem of coordinating with an
unknown teammate, whose goal and corresponding behav-
ior is uncertain. Typically, such hidden information is static
in nature, and inference strategies follow traditional proba-
bilistic reasoning. This paper addresses the possibility that
the hidden information changes periodically. For example,
if a team of agents is pursuing group of fleeing agents and
one of the teammates changed targets, the remaining mem-
ber should identify the change and alter its behavior accord-
ingly in order to cooperate effectively. However, we also
assume that the precise mechanism of such an evolving sys-
tem is unknown, that is, the agent has no cognitive model for
predicting how and when its teammate changes its behavior.

Representation
From a support agent’s perspective, the problem of uncer-
tainty in a teammate’s current intent can be conceptualized
as a single-agent partially observable Markov decision pro-
cess (POMDP) (Kaelbling, Littman, and Cassandra 1998).
For convenience and consistency, we will adopt the repre-
sentation of a POMDP while discussing belief distributions
as applied to MCTS. Furthermore, in this paper, we adopt a
few assumptions regarding an unknown, observed agent for
clarity. First, the agent acts intentionally toward one goal at
a time. Secondly, the agent acts in a primarily determinis-
tic, non-recursive manner, meaning the agent’s model of the
teammate does not possess nested recursive models of the
agent’s beliefs, the agent’s beliefs regarding the teammate,
and so on from the teammate’s point of view.

In order to plan successfully in an POMDP, agents must
utilize a sequence of observations to update their beliefs
over time. As we define observations to be derived from

actions taken in the game, a history can be defined as
ht = 〈a1, a2, ...at〉. Beliefs are then described as a dis-
tribution over possible states given those histories, or bt =
Pr(s|ht) ∀s ∈ S. The goal of planning in a POMDP
is to find a policy π maximizing the agent’s expected re-
ward, as given by Jπ(b0) =

∑∞
t=0E[R(st, at)|b0, π]. Solv-

ing POMDPs with a large number of states is intractable in
many settings; therefore, we use a sampling based method,
Monte-Carlo Tree Search, for an approximate solution. Our
implementation is described in the next section.

Planning
Monte-Carlo Tree Search is a search algorithm based on
Monte-Carlo simulations within a sequential game. Through
evaluating potential states by averaging simulation out-
comes, MCTS holds several advantages over other search
methods. By sampling, it examines a subset of the complete
state space, yet it asymptotically converges to an optimal
policy in fully observable and partially observable problems
given an appropriate exploration function (Silver and Veness
2010).

Potential actions at each node are selected in a fashion that
balances exploration and exploitation. The idea behind such
a heuristic is to progress deeper into the game tree through
actions with higher expected value (exploitation) while pe-
riodically trying less favorable moves that may have unseen
value (exploration). We use Upper Confidence Bounds ap-
plied to Trees (UCT), a popular, efficient algorithm for guid-
ing MCTS (Kocsis and Szepesvári 2006). Our implementa-
tion differs from traditional POMDP planners by employing
a novel adjustment to traditional Bayesian-style belief revi-
sion.

Updating Beliefs
An important aspect of planning in a partially observable
scenario is the ability to refine a set of beliefs regarding the
current world state. This is completed through inference af-
ter observing an aspect of the world. As by definition, a
POMDP is in part defined by a set of probabilities for obser-
vations made in each potential state. Traditionally, beliefs
are revised using the observation history and Bayes Theo-
rem:

Pt(si|o) = Pt−1(si)×
Pt−1(o|si)∑

j Pt−1(sj)× Pt−1(o|sj)
(1)

where Pt(si|o) is the probability at time t of being in state
s ∈ S given the observation o ∈ Ω of action a ∈ A.

Working with teammate whose action selection mecha-
nism is unknown to an agent, we must consider an approxi-
mation to the observation probabilities of certain actions, as
the likelihoods are not explicit. If our set of potential models
included the agent’s utility for states associated with its pre-
ferred goal, we could use P (o|s) ∝ eVa,i , as suggested by
(Ito, Pynadath, and Marsella 2007), where V is the utility of
action a ∈ A for agent i. However, as neither utility values
nor the action probabilities for a teammate are explicit in ad
hoc settings, we estimate the probabilities with a simple ex-
ponentiated loss function, which is considered equivalent to
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Figure 1: Number of ideal observations (those providing
0 loss only to the appropriate goal) required for the belief
distribution to align with the corresponding goal as a func-
tion of the number of observations supporting the prior goal.
Lines denoted with N correspond to the normalized belief
revision approach. All remaining cases are not normalized.

a Bayes rule update in certain contexts (Bousquet and War-
muth 2003). Here, we define our loss function, Li, to be
0 if the model working toward goal i predicts the observed
action, o, and 1 otherwise.

Pt(si|o) = Pt−1(si)×
e−Li∑

j Pt−1(sj)× e−Lj
(2)

Furthermore, as the concept of an agent with shifting
priorities has natural similarities to shifting experts/online-
learning problems, we borrow the concept of modifying our
update step by additionally adding a mix of past posteriors,
as described in (Bousquet and Warmuth 2003). By mixing
the updated belief vector with the initial belief vector, we
are able to enforce upper and lower bounds on the possi-
ble values of the agent’s belief probabilities. This ensures
the capacity for an unlikely target to surpass the most likely
target quickly given a small number of appropriate observa-
tions. Equation 3 shows the mixing alteration, which is then
normalized in Equation 4.

P ∗t (si|o) = βPt=0(si) + (1− β)
Pt−1(si)× e−Li∑
j Pt−1(sj)× e−Lj

(3)

Pt(si|o) =
P ∗t (si|o)∑
j P
∗
t (sj |o)

(4)

The mixing parameter is constrained by 0 ≤ β ≤ 1.
When β = 0, the updated probability takes the form of
Bayes rule, while a value of 1 results in a static probabil-
ity equal to the initial probability assigned. In this context,
selection of β is dependent on the noise encountered within
a scenario and is outlined in the next section.

Parameter Tuning
The selection of an appropriate value of β is crucial for iden-
tifying hidden state changes. With a belief update that does
not account for this need, as is the case for the traditional
belief revision approach, identification of hidden state tran-
sitions can require long sequences of observations. In fact,
in the ideal case, with observations only supporting the true
underlying state, identification of a goal switch is linearly
dependent on the number of observations supporting a pre-
vious goal. This is particularly undesirable for domains with
hundreds or thousands of observations before a switch oc-
curs.

The alteration proposed in Equation 4 does not have a
closed form solution for the number of steps required for
a state switch to be identified. However, empirically we ob-
serve that tuning of β creates an upper bound for the num-
ber of steps required under ideal observations. Figure 1 de-
picts the effect of various tested β values under thirty poten-
tial goals and perfect observations. Despite an increase in
the number of steps a teammate pursues the first goal, the
required number of observations supporting a second goal
to converge to the appropriate belief is bounded by a finite
value.

Balancing Noise and Responsiveness
Given that the modified belief revision approach can bound
the number of required observations to any arbitrary num-
ber, selecting a value for β has the tradeoff between respon-
siveness and susceptibility to noise. A series of inaccurate
observations or observations of actions by an agent imper-
fect in its pursuit of a goal can lead belief convergence to
the wrong target goal. Tuning β is dependent on the likeli-
hood of such observations in the domain tested. We discuss
here a tuning strategy for a static noise rate.

Behavior Noise We define noisy observations as those
supporting any subset of goals not including the true under-
lying goal currently being pursued by an agent. A worst
case, then, occurs when observations support exactly one
incorrect goal, that is Li = 0 for an incorrect goal i and
Lj = 1 for ∀j ∈ S, j 6= i. If multiple successive noisy ob-
servations occur supporting a single incorrect goal, the belief
distribution can converge to the incorrect state.

Consider the case where a domain has a static noise rate
r. The probability of a number of successive noisy observa-
tions, K, forms a geometric distribution with P (K = k) =
rk(1 − r). The expected length of a sequence of noisy ob-
servations, then, is given by E[K] = 1

1−r . It is reasonable
to constrain β such that the number of required observations
to identify a switch in underlying state to n ≥

⌈
1

1−r

⌉
.

Selecting β Due to the normalization of probabilities in
both Equations 3 and 4, choice of β depends on the noise rate
tolerance as well as the number of alternative goals, as nor-
malization considers the probabilities of all possible goals
involved. Such normalization is necessary for decision the-
oretic reasoning, as the sum of probabilities of underlying
states must sum to one. The unnormalized version, given by
Equation 5, is useful for approximation of the normalized
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Figure 2: Mazes in Cops and Robbers, labeled a-e. Images from (Macindoe, Kaelbling, and Lozano-Pérez 2012).

case. Figure 1 depicts a comparison of the two version, with
N denoting the normalized cases.

Pt(si|o) = βP0(si) + (1− β)Pt−1(si)× e−Li (5)

Pt(si|o) = βP0(si) + βP0(si)

t−1∑
m=1

(1− β)me−
∑t−1

p=t−m Li,p

+ (1− β)tP0(si)e
−

∑t−1
p=1 Li,p (6)

The expanded case, represented by Equation 6, allows for
the direct calculation of the upper and lower bounds of prob-
ability associated with state si. By expanding as t→∞ and
Lt = 1 ∀t, the result settles at Plower(si) = βP0(si)

1−e−1(1−β) .
Similarly, expanding with loss Lj = 0 ∀j, j 6= i yields
the upperbound Pupper(si) = P0(si). With the bounds es-
tablished, we can relate the number of steps required for a
state with minimal probability to succeed one with maximal
probability. Assuming P (si) is the lower bound at time t
and P (sj) is the upper bound, which is the maximal sepa-
ration, we wish to find a lower bound for β that guarantees
P (si) > P (sj) after n observations in support of state si.

Evaluation
To evaluate our approach, we test various belief convergence
strategies within a two member team version of the pursuit
domain, Cops and Robbers.

Cops and Robbers
The version of Cops and Robbers used in this paper was
first introduced in (Macindoe, Kaelbling, and Lozano-Pérez
2012). It is a form of the popular multi-agent pursuit sce-
nario (Benda 1985) designed for teams consisting of two
members. Figure 2 shows the five tested mazes, a-e, dif-
fering in layout, the number of robbers, and the inclusion of
one-way doors, which can punish poor action selection by
lengthening paths to targets as well as by trapping agents, as
in maze b. Coordination is key, as an incorrect prediction of
teammate behavior may allow a robber to slip by one of the
agents and flee.

The domain proves challenging for multi-agent planning
due to the size of its state space. For the mazes tested, the
possible reachable states range from 1.6 million to 104 mil-
lion with 0.282%± 0.123% being successful capture states.
This size is ideal for an initial exploration, as it is too large
for optimal solution online yet small enough to avoid any

domain engineering that may muddle the comparison of ap-
proaches.

Two notable works exist in this and a similar domain.
Macindoe et al. 2012 introduced Cops and Robbers as a
domain for testing sequential planning for assistive agents;
however, the teammate agent in the evaluation chose a single
target at the start and never switched for the duration of the
game. Nguyen et al. 2011 previously used a similar game,
Collaborative Ghostbuster, and modeled the choice of target
as a Markov decision process, with transition probabilities
dependent on the resulting score of pursuing that target.

Agents
For our tests, we implemented three teammates whose goal
remains uncertain to the agents.

• A* Greedy - This agent pursues the closest robber at the
start of the game and never switches targets.

• Switch Once - This agent switches targets at a fixed point
in the game, on the eighth turn.

• Probabilistic - This agent can potentially switch multiple
times. On each turn, the probability of switching is given
by

p = 0.2× distance(target)∑
r∈robbers distance(r)

× |robbers| (7)

All teammates move toward their selected target using A*
path planning, with 10% noise in their actions. A noisy ac-
tion is randomly selected from the set of possible actions
that would not pursue the active target.

For the ad hoc agent, we implement several MCTS-UCT
agents, varied by how they model the unknown teammate:

• UCT - Explores both agents’ actions with UCT. This
agent assumes its teammate will plan and behave in an
identical manner to itself. It expects the sidekick to pur-
sue the best target as identified by the tree search and in
the manner the tree search dictates.

• Bayes - Plans using UCT for its own actions but uses a be-
lief distribution over single-target A* agents for each pos-
sible teammate goal. Updates beliefs according to Equa-
tion 2.

• RAPID - Similar to Bayes, but updates with modified be-
lief update technique in Equation 4.

• Limited oracle - Knows the true target at each turn, even
after switches occur. However, it does not have prior
knowledge of when switches will occur. This agent plans
with perfect knowledge of the current target.
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Tests
Each pair of teammate and reasoning agent participate in
one hundred trials of each maze. Steps taken to complete
the game, beliefs of applicable agents, and targets of the
teammates are logged for analysis. We allow each UCT-
based agent one hundred game simulations per turn, with
root parallelization (Chaslot, Winands, and van Den Herik
2008) across four cores.

To emphasize the effect of tuning, we use two versions of
our RAPID agent, each with a different value for β. Given
the 10% noise rate in our experiment and the geometric
distribution of expected successive noisy actions, we ob-
serve that 99.9% of groups of successive noisy actions are
of length 2 or fewer. Choosing n = 3, then, gives us a
lower bound for choice of β = 0.016 from Theorem 2. For
a less conservative tuning, the remaining RAPID agent uses
β = 0.85 for enhanced responsiveness at the cost of noise
susceptibility.

Results
We compare the performance of the RAPID agent against
the agent which revises its beliefs with a traditional Bayes
update. The plain UCT agent provides the base level of
performance we would expect with any of the UCT-based
agents, while the limited oracle agent demonstrates that
there may still be room for further improvement. It should
be noted that the results of the limited oracle agent could be
unattainable, as the agent has access to the teammate’s true
target at each turn.

Belief Recovery
Table 1 reports the number of times in 100 trials the team-
mate switched targets as well as the average steps required
for the agents to identify the change. The base UCT and lim-
ited oracle agents are omitted as they do not possess a belief
system. The A* Greedy teammate is similarly absent as it
never switched targets.

With respect to belief recovery time, the RAPID agent
with the conservative tuning of β only outperforms the
Bayes agent in one of ten test cases (α = 0.01). Between
noisy actions and those supporting potentially two or more
targets, the RAPID (β = 0.016) agent could not utilize the
bounded convergence time to significant effect.

The second RAPID agent, however, outperforms the
Bayes agent in six of the ten relevant test cases. In these
instances, the agent was able to detect a switch faster on av-
erage than the Bayes agent, resulting in an improvement of
nearly seven turns in one test case.

Accuracy
With a shorter time to converge to a pursued goal, it is nat-
ural to expect an increase in accuracy of the predicted goal.
For this metric, steps where the correct target probability is
equal to that of another target are considered ambiguous and
are counted as an incorrect identification. This explains a
portion of the low observed accuracies, particularly as the
first few steps in each game are not enough to distinguish
targets.

With regard to overall accuracy, the RAPID agents were
found to be correct more frequently in the majority of sce-
narios. Both β levels had significant accuracy improvements
over Bayes in eight test cases each. The Bayes agent out-
performs the β = 0.016 agent in two instances and the
β = 0.85 agent in four instances, as seen in Table 2. This
loss of accuracy in the higher β value, particularly in cases
shown to have significantly shorter belief recovery periods,
demonstrates the susceptibility to noise, as was expected in
the tuning of β.

Steps Taken
Table 3 shows the average number of turns required to com-
plete each test case. The less responsive of the RAPID
agents had significant improvements over the Bayes agent
in five of the fifteen test cases. Furthermore, it no test cases
did it perform significantly worse. A higher β value, having
reduced belief correction time and improved accuracy, re-
sulted in coordination time improvements in nine test cases.
The Bayes agent only achieved a higher average score than
the β = 0.85 agent in one case. Additionally, results for the
remaining tested agents are included for comparison. The
vanilla UCT agent, which assumes identical recursive plan-
ning on the part of its teammate, demonstrates the benefit of
accurate modeling, as it performed worse in every scenario
than any other tested agent.

Discussion
We have outlined a computationally lightweight alteration
to the traditional belief revision approach. This modifica-
tion is not limited to any specific planning paradigm but can
be applied to any existing approach with similar belief rep-
resentations. Planning under our proposed changes to belief
revisions allows an agent to quickly recognize and adapt to
altered behavior indicative of a goal switch. Faster belief
convergence to the correct goal boosts overall accuracy of
the agent’s predictions, which are directly leveraged in plan-
ning for improved coordination. Secondly, this initial em-
pirical evidence suggests that reasoning quickly over a set of
independent models may provide an acceptable approxima-
tion to modeling higher level reasoning of an unknown team-
mate. A predictive mechanism for goal changes is absent
from our agent’s model of its ad hoc teammate, as the agent
possesses no knowledge regarding how an unknown team-
mate chooses its target or revises its plan. Rather, the agent’s
model’s set of potential behaviors serve as an approximation
to a complete cognitive model when the agent can quickly
identify changes in such behavior. Human-agent teamwork
is one potential application of this responsive adaptation. If
an agent is to assist a human in an environment that has clear
potential goals and corresponding behaviors, our approach
may prove advantageous. It is likely easier to design pre-
dictive models for simple goals, compared to more complex
cognitive models.
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Bayes β = 0.016 β = 0.85
Teammate n Average n Average p n Average p

a SwitchOnce 100 5.04 96 3.76 <0.001 100 1.00 <0.001
Probabilistic 269 4.42 400 5.14 0.096 363 2.78 <0.001

b SwitchOnce 99 18.04 92 18.40 0.457 92 23.30 0.079
Probabilistic 369 12.96 326 17.83 <0.001 472 11.72 0.145

c SwitchOnce 94 7.57 66 6.53 0.248 67 9.06 0.221
Probabilistic 454 12.92 502 14.25 0.128 356 8.10 <0.001

d SwitchOnce 100 15.87 100 14.55 0.347 100 11.75 0.085
Probabilistic 557 15.48 644 14.19 0.133 532 9.45 <0.001

e SwitchOnce 100 18.7 61 18.18 0.443 100 11.79 0.007
Probabilistic 506 8.85 356 7.86 0.132 396 6.09 <0.001

Table 1: Average actions observed before sidekick’s true target is most likely in agent’s belief distribution. Bold values indicate
significant results over the Bayes agent (α = 0.01). The rows divide results according to the maze tested, as indicated by a-e.
n is the number of goal switches observed in each test set.

Bayes β = 0.016 β = 0.85
Teammate n % Correct n % Correct p n % Correct p

a
A* 2188 17.69 2226 17.83 0.448 1617 23.69 <0.001

SwitchOnce 3201 71.88 3333 78.97 <0.001 2794 80.96 <0.001
Probabilistic 2159 57.94 2634 62.34 <0.001 2476 64.01 <0.001

b
A* 3792 26.85 3796 48.97 <0.001 4181 25.52 0.089

SwitchOnce 3771 39.30 4574 46.55 <0.001 5100 34.27 <0.001
Probabilistic 3712 33.14 4280 30.72 0.010 4029 38.07 <0.001

c
A* 2671 40.43 2406 22.94 <0.001 2522 33.51 <0.001

SwitchOnce 3472 60.77 2521 52.52 <0.001 2689 51.95 <0.001
Probabilistic 3533 42.37 3960 46.31 <0.001 2763 47.09 <0.001

d
A* 2516 14.63 2708 31.50 <0.001 2962 26.00 <0.001

SwitchOnce 6358 49.53 5223 57.15 <0.001 4927 48.81 0.227
Probabilistic 4412 45.42 5157 50.69 <0.001 5048 57.81 <0.001

e
A* 2527 14.88 1356 15.71 0.245 1939 13.67 0.125

SwitchOnce 4480 35.71 2420 32.73 0.006 3562 38.63 0.004
Probabilistic 3454 40.56 2536 42.59 0.058 2885 35.94 <0.001

Table 2: Percentage of steps with correct target identified by belief distribution. Bold values indicate significant results over the
Bayes agent (α = 0.01). n is the total number of steps across each test set.

Bayes β = 0.016 β = 0.85 UCT Ltd Oracle
Teammate steps steps p steps p steps steps

a
A* 21.88 22.26 0.323 16.17 <0.001 51.95 31.97

SwitchOnce 32.01 33.33 0.480 27.94 0.005 71.07 18.74
Probabilistic 21.59 26.34 0.063 24.76 0.006 64.89 25.91

b
A* 37.92 37.96 0.125 41.81 0.460 57.76 54.89

SwitchOnce 37.71 45.74 0.164 51.00 0.010 61.81 49.83
Probabilistic 37.12 42.8 0.171 40.29 0.378 56.6 41.48

c
A* 26.71 24.06 <0.001 25.22 0.004 58.11 28.74

SwitchOnce 34.72 25.21 <0.001 26.89 <0.001 67.58 35.88
Probabilistic 35.33 39.60 0.309 27.63 0.002 71.78 31.74

d
A* 25.16 27.08 0.174 29.62 0.068 69.65 39.94

SwitchOnce 63.58 52.23 0.010 49.27 0.001 84.08 75.97
Probabilistic 44.12 51.57 0.058 50.48 0.043 81.05 42.39

e
A* 25.27 13.56 <0.001 19.39 0.004 62.08 11.38

SwitchOnce 44.80 24.20 <0.001 35.62 <0.001 81.24 20.17
Probabilistic 34.54 25.36 <0.001 28.85 0.009 73.21 19.7

Table 3: Average steps taken by the agent/teammate pair to complete the maze. Bold values indicate significant improvement
(as indicated by the p-value) over the Bayes agent (α = 0.01).
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